89^2+80^2=c^2

Simple and best practice solution for 89^2+80^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 89^2+80^2=c^2 equation:



89^2+80^2=c^2
We move all terms to the left:
89^2+80^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+14321=0
a = -1; b = 0; c = +14321;
Δ = b2-4ac
Δ = 02-4·(-1)·14321
Δ = 57284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{57284}=\sqrt{4*14321}=\sqrt{4}*\sqrt{14321}=2\sqrt{14321}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14321}}{2*-1}=\frac{0-2\sqrt{14321}}{-2} =-\frac{2\sqrt{14321}}{-2} =-\frac{\sqrt{14321}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14321}}{2*-1}=\frac{0+2\sqrt{14321}}{-2} =\frac{2\sqrt{14321}}{-2} =\frac{\sqrt{14321}}{-1} $

See similar equations:

| 8y+15=63 | | 3(2c+4)=-27-7c | | 5y-14=30 | | 15t-12=-27 | | r^2=1661.06 | | 15t-27=-72 | | 8+(3)5^(2x-3)=13 | | 7-w=232 | | 2g+6=14 | | -283=-8(7n-7)-3 | | -92=-5-3(3v+5) | | 8+(3)5^2x-3=13 | | 105=-7(-n-7) | | 2x-14=10-6 | | x+3/12=2 | | 17-(4y-5)/2=12-5y | | 5x^2+5x-14=34-29x | | 100=-4(4x-7)+8 | | -23=1-5x-3x | | 0.0063492063x^2+630=0 | | 12x+16=8x | | 123+2x+)=180 | | 4z^-2+27z^-1=40 | | -2/315x^2+630=0 | | Y=20x+75 | | 12x-1=-20-9x | | 12x-1=-9x-20 | | 2x/4+5=21 | | 8x+8=5x+24 | | 16=b^2+25-1.25b | | 4(2x+7)=40 | | 1-12x=-20-9 |

Equations solver categories